Logic operations in memory using a memristive Akers array

نویسندگان

  • Yifat Levy
  • Jehoshua Bruck
  • Yuval Cassuto
  • Eby G. Friedman
  • Avinoam Kolodny
  • Eitan Yaakobi
  • Shahar Kvatinsky
چکیده

In-memory computation is one of the most promising features of memristive memory arrays. In this paper, we propose an array architecture that supports in-memory computation based on a logic array first proposed in 1972 by Sheldon Akers. The Akers logic array satisfies this objective since this array can realize any Boolean function, including bit sorting. We present a hardware version of a modified Akers logic array, where the values stored within the array serve as primary inputs. The proposed logic array uses memristors, which are nonvolatile memory devices with noteworthy properties. An Akers logic array with memristors combines memory and logic operations, where the same array stores data and performs computation. This combination opens opportunities for novel non-von Neumann computer architectures, while reducing power and enhancing memory bandwidth. & 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithmic Considerations in Memristive Memory Processing Units (MPU)

Memristive technologies are attractive candidates to replace conventional memory technologies, and can also be used to perform logic and arithmetic operations using a technique called 'stateful logic.' Combining data storage and computation in the memory array enables a novel non-von Neumann architecture, where both the operations are performed within a Memory Processing Unit (MPU). The use of ...

متن کامل

2T1M-Based Double Memristive Crossbar Architecture for In-Memory Computing

The recent discovery of the memristor has renewed the interest for fast arithmetic operations via high-radix numeric systems. In this direction, a conceptual solution for high-radix memristive arithmetic logic units (ALUs) was recently published. The latter combines CMOS circuitry for data processing and a reconfigurable “segmented” crossbar memory block. In this paper we build upon such a conc...

متن کامل

Nano crossbar array of Complementary Resistive Switches with nonlinear memristive characteristics

Emerging solid state memory devices based on different materials and volatility has been widely acknowledged like NVRAMs (or Memristor).Evolution of new solid state ionic conductors and in particular (Memristor) brought impetus to the creation of new domain of larger storage capabilities for the future electronic systems. The achievements of these emerging technologies are kind of encouraging w...

متن کامل

Stochastic Memristive Devices for Computing and Neuromorphic Applications

Nanoscale resistive switching devices (memristive devices or memristors) have been studied for a number of applications ranging from non-volatile memory, logic to neuromorphic systems. However a major challenge is to address the potentially large variations in space and time in these nanoscale devices. Here we show that in metal-filament based memristive devices the switching can be fully stoch...

متن کامل

High-density crossbar arrays based on a Si memristive system.

We demonstrate large-scale (1 kb) high-density crossbar arrays using a Si-based memristive system. A two-terminal hysteretic resistive switch (memristive device) is formed at each crosspoint of the array and can be addressed with high yield and ON/OFF ratio. The crossbar array can be implemented as either a resistive random-access-memory (RRAM) or a write-once type memory depending on the devic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microelectronics Journal

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2014